Числа и фигуры могут объединиться, например, в такую композицию.Девять чисел натурального ряда расставлены в клетках квадрата. Можно ли сразу сказать, что это красиво? Вряд ли. Красота здесь не внешняя, а содержательная, внутренняя. Чтобы ее понять требуется напряжение мысли, нужно посчитать суммы трех чисел в каждой строчке, в каждом столбце и по каждой из двух диагоналей. Оказывается, сумма во всех восьми случаях одна и та же, равная 15. |
|
Выходит в огромном количестве различных расположений девяти чисел в клетках квадрата можно найти такое удивительное по своему содержанию. От хаоса различных, ничем не примеча- тельных вариантов расположения - к своеобразному и редкому упорядочению. История происхождения подобных квадратов уходит в глубь тысячелетней истории человечества. Естественно, в те древние времена, когда даже отдельным числам приписывались магические свойства, подобные числовые построения не могли назвать иначе как волшебные или магические квадраты. К магическим квадратам вернемся отдельно, а пока рассмотрим более простые, но и более разнообразные расположения чисел с постоянными суммами. |
Именно в этой области существует большое количество занимательных задач простых по условию и полезных для ума. Для пересекающихся рядов чисел с одинаковыми суммами отечественный математик и популяризатор науки Борис Анастасьевич Кордемский ввел определение кросс-суммы, по аналогии с кроссвордами (от английского cross - пересекаться,скрещиваться). Таким образом, кросс-суммы - это пересекающиеся ряды чисел с одинаковыми суммами. Словосочетание немного неблагозвучное из-за трех букв «с», идущих подряд. Можно было бы назвать их по-русски: числовые пересечения с одинаковыми суммами, но получается более громоздко. Кроме того, нужно отдать долг вежливости по отношению к мэтру отечественной занимательной математики, автору «Математической смекалки», на книгах которого воспитывалось наше поколение. Начнем с простейшего расположения чисел в одну строчку и один столбец с пересечением:
Можно ли расставить числа от 1 до 5 так, чтобы сумма трех чисел в строчке и трех чисел в столбце была одна и та же? Ответ дается в приведенной схеме:
Число 3 в центр, а по краям равноудаленные от центра пары чисел. Это не единственное решение. Сумма 1+2+3+4+5=15, нечетная. Число, стоящее на пересечении, входит как в сумму чисел строки, так и в сумму чисел столбца, и мы должны приба- вить его к 15 и, поделив на два, вычислим кросс-сумму. Значит, число на пересечении обязательно нечетное, но это может быть 1, 3, 5. Отсюда получим другие решения, с суммой равной 8 или 10. Ещё возможны перестановки крайних чисел, не влияющие на сумму, но дающие дополнительные решения. Убеждаемся, что вариант с одним пересечением достаточно легкий и допускает несколько решений с различными кросс- суммами.
| ||||||||||||||||||||||||||||||
|